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Abstract

The nationwide rollout of smart meters in private households raises privacy
concerns: Is it possible to extract privacy-sensitive information from a household’s
power consumption? For a small sample of 869 Upper Austrian households,
information about consumption-heavy amenities and household characteristics are
available. This work studies the detection of households with swimming pools
(the most common amenity in the dataset) using Convolutional Neural Networks
(CNNs) applied on load heatmaps constructed from load profiles. Although only
a small dataset is available, results show that by using CNNs, privacy can be
broken automatically, i.e., without the time-consuming, manual feature
generation. The method even slightly outperforms a previous approach that relies
on a nearest neighbor classifier with engineered features.
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Introduction
Based on a decision of the European Union, the Austrian Government aims at

a 95% coverage for the smart meter rollout in private households until 2022 [1].

Smart meters automatically record the load data in a 15-minute interval and, per

default, report the numbers once a day. The automated communication raises cus-

tomers’ privacy concerns as knowledge is still sparse about what information can

be extracted from 15-minute load data [2].

A 2017 survey [3] on smart meter data privacy provides a thorough overview of

the major concerns related to the collection of load data. Especially, non-intrusive

load monitoring (NILM [4]) could be potentially harmful, as the techniques aim

at disaggregating load data to extract load patterns incurred by different devices

[5], [6]. In addition to detecting appliances, previous works by Chen et al. [7] and

Eibl et al. [8] demonstrate the possibility of detecting the presence or absence of

residents, with their work being framed as “occupancy” and “holiday detection”,

respectively.

Chen et al. [9] showed that is possible to locate solar-powered homes based on their

energy production signatures, which are location-dependent. For 14 households,

they achieved 500-meter accuracy with one-second resolution and 28-kilometer ac-

curacy with one-minute resolution, respectively.

Beckel et al. [10] showed that demographic data, e.g., the number of residents in

a household or whether or not there are children in the household, can be extracted

from 30-minute load data over a period of one and a half years. They achieved an

accuracy of 70% over all 4232 households. For specific characteristics and appliances,

the accuracy even exceeded 80%.

mailto:cornelia.ferner@fh-salzburg.ac.at
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Burkhart et al. [11] investigated a sample dataset of 869 households from Upper

Austria [12]: In addition to the 15-minute load readings, the dataset offers infor-

mation about whether the household possesses any consumption-heavy amenities,

such as a swimming pool, home cinema, aquarium or water bed. By comparing the

households’ consumption patterns to the characteristic load profile of a pool filter

pump, they were able to correctly detect households with pools with a precision of

68.5% using a nearest neighbor classifier on manually designed features.

This work explores how to automate the pool detection process by training a

convolutional neural network (CNN) [13] directly on the load data. While traditional

machine learning methods usually require careful feature generation and selection

before applying the classifier, deep learning methods such as the CNN process the

raw data and learn both, how to extract appropriate features and how to classify,

at the same time. Thus, no prior knowledge about the domain and data is needed

and consequently time and manual effort can be saved.

Since CNNs are usually applied on very large datasets[1], it is not known how

the methodology performs for a small dataset like the given one, where only 64

out of 869 households have a pool. The results for pool detection show that the

deep learning approach can compete with the approach in [11] that uses manually

designed features. While the practical consequences seem marginal, from a privacy

perspective the implications are considerable: using CNNs private information can

be inferred having both, a small dataset and a small time budget.

This paper is structured as follows: In the Background Section, we provide an

overview of the pool detection method from [11] and CNNs. In the Experiments

Section, we describe our proposed CNN for automated pool detection and the de-

tection results for the dataset from [11]. In the Discussion and Future Work Section,

we compare and discuss these results and provide an outlook to future research di-

rections.

Background
This section describes the existing pool detection method that we use for comparison

as well as CNNs that are employed in this work.

Existing Pool Detection Method

Pool detection has already been done in [11] by exploiting the fact that a swimming

pool requires a filter pump. The detection method aims at finding filter pumps which

(i) run in a regular manner over the warmest months of the year and (ii) consume

several hundred Watts of electrical power, thus constituting a distinct part of the

load.

An important prerequisite for the method is the representation of the time series

as a heatmap, where the columns represent days and the rows represent the time

of day. Using this representation, the two properties of the pool pump stated above

result in more (Fig. 1) or less (Fig. 2) regular rectangular shapes overlaying the

remaining load.

[1]Two famous datasets are MNIST and ImageNet. MNIST (http://yann.lecun.com/exdb/

mnist/) is a dataset for classifying handwritten digits and comprises 60000 images.

ImageNet (http://www.image-net.org/) is a collection of images in 27 high-level cateories

and about 14 million images.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://www.image-net.org/
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Figure 1 Heatmap showing the load [kW] of a household with a pool. This household’s pool
pump runs regularly so that the pool features of [11] can be extracted rather easily by detecting
the rectangular shaped areas.

The algorithm detects these rectangular shapes by treating heatmaps as images

and by applying image processing methods such as morphological operations. Using

a carefully engineered, sophisticated sequence of steps, the authors achieve a recall

of 68% (Fig. 4 (left)).

Convolutional Neural Networks (CNN)

Deep neural networks [14] differ from other machine learning algorithms in that

they process the raw data directly, i.e., without an explicit feature generation step.

The inherent feature generation is one of the big advantages of neural networks,

as results can be obtained more quickly without the need for manually engineered

features. The raw data passes through the layers of the network which interact in

a non-linear fashion.

Feature Generation

In common network architectures, the first few layers extract features from the given

input vectors (4 layers, denoted as Feature Generation in Fig. 3). In a convolutional

neural network, as described in the following, the first layers are convolutional layers.

Each layer consists of a number of filters that detect low level patterns in small

spatial regions, e.g., in a 5×5 pixel area[2]. The output of the convolutional layer

passes through the non-linear activation function. The most common activation

function is the rectified linear unit (ReLU) [15] that assigns f(x) = max(0, x) to

each input. The use of ReLU speeds up the training, because the function is easy to

compute and to derive. Usually, a pooling layer follows the convolutional layer (see

Fig. 3). Pooling reduces the feature size in the network and prevents overfitting.

The most common form is max pooling which chooses the highest value in a given

window [13].

Classification

The subsequent classification layers (2 layers, denoted as Classification in Fig. 3),

follow a more traditional, dense setup, where each node of one layer layer is con-

[2]For each position of the convolutional filter, the inner product of the filter matrix

and the input data is computed.
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Figure 2 top: This household’s pool pump runs less regularly such that the features are more
difficult to detect from the load in the top graph. bottom: The maximum value of the detail
below is set to 2 kW to make the rectangular pool pump pattern more visible.

nected with every node of the subsequent layer to learn accurate decision boundaries

in the feature space (fully connected). In order to prevent overfitting to the training

data, a dropout layer [16] is inserted between two fully connected layers. Dropout

means to randomly choose a subset of nodes that is ignored when updating the node

weights. The final classification layer, typically a softmax layer [14], which predicts

a vector of probabilities corresponding to the output classes.

Training

The network’s weights are trained by optimizing a loss function based on the error

between the network’s predicted output and the target classes. The optimization

algorithm iteratively updates the networks’ weights to minimize the classification

error. If gradient-based loss optimization is used, the update is commonly known

as backpropagation.

The trained network weights in the feature generation layers exploit redundant

information in the input data. The output of each layer (activations) represents the

discriminative information for classification of this input, thus leading to a good,

discriminative representation of the original input.

Experiments
In the following, we present experiments to demonstrate the effectiveness of a CNN

to generate suitable features from the input data without any prior knowledge

about the problem domain. From a privacy perspective, the intriguing results are

disadvantageous: The CNN is a privacy invader. While the development of the
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Figure 3 Sketch of the network architecture. The 96x395 heatmaps pass through 4 convolutional
layers followed by two fully connected layers. For better visualization, the input data is depicted in
color. Note that 4 convolutional layers plus pooling are used instead of the depicted 2.

method in [11] took several weeks, the development of the CNN is much faster,

provided that the attacker has suitable skills and tools in both cases.

In order to compare our results to those in [11], we apply our method to the same

dataset. It consists of load data (in kW) captured by smart meters with a time

granularity of 15 minutes from 869 households in Upper Austria covering slightly

more than one year (396 days). 64 of these households have a swimming pool. As

in [11], each raw time series is converted into a 96 × 396 heatmap (e.g. Fig. 1). In

contrast to their approach, we directly pass the heatmaps to the CNN network, so

no further feature generation or preprocessing is applied.

Setup of the CNN

The setup loosely follows common basic CNN architectures, especially those of the

AlexNet architecture described in [13]. We set the filter sizes to fit our input image

size and to still have sufficiently many nodes left after the feature generation layers.

However, as the focus lies on automating the classification process, the parameters

and settings have not been further tuned.

More specifically, Figure 3 displays our network architecture[3]: We use 4 convo-

lutional layers, each with batch normalization (see below), followed by ReLU and

max pooling. The first convolution layers are based on 15 5×5 filters, the subsequent

ones use 15 3×3 filters. Filters are moved each time by 1×1 pixels (=stride). At

the border, values are computed by extending the image with zeros (padding). The

window size of the first pooling layer is chosen to be 5×5 with a stride of 3×3, the

latter ones are 3×3 with a stride of 2×2. The pooling layers reduce the feature size

from originally 96·396 to 195 (= 15·13, i.e. number of filters · remaining heatmap

pixels). The subsequent classification layer is a fully connected (dense) layer with

32 nodes with batch normalization and ReLU followed by a 50% dropout layer. The

remaining fully connected layer reduces the size to two nodes corresponding to the

two classes “pool” and “no pool”. This final layer includes the softmax function

producing a distribution over the two classes.

[3]The network is implemented in Python 3 using PyTorch: https://pytorch.org/

https://pytorch.org/
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During training, the cross entropy loss L [14] between the predicted output class ŷ

and the actual output y is computed:

L(y, ŷ) = − 1

πy
y log(ŷ) − 1

π1−y
(1 − y) log(1 − ŷ) (1)

We account for the imbalanced relative amount of heatmaps per class in the

dataset (denoted as πy) by applying a weighting inverse to the class distribution

to the cross entropy loss function. This weighting prevents the loss function from

overemphasizing on the “no pool” class. Thus, using a binary output with “pool”

and “no pool” coded as y = 1 and y = 0, respectively.

In order to minimize the loss function, the gradient-based Noam optimizer [18] is

used that iteratively updates the weights based on an empirically estimated model

size s and the current epoch p. It initially increases the learning rate[4] r for a

number of warm-up steps w and finally decreases it:

r = s−0.5 · min
(
p · w−1.5, p−0.5

)
(2)

The Noam optimizer is parameterized with w = 15 and s = 1000. The training

lasts for 100 epochs, i.e. 100 passes over the training data, and the data is split

into batches of size 32. Data batches are used to reduce the input data size. As the

network does not see the data at once, we apply batch normalization [17] after each

layer to reduce the variance of input values to the next layer.

Results

We evaluate two settings: i) using the CNN as is for classification (CNN pure) and

ii) extracting the CNN features (after the fourth convolutional layer) and classifying

these features by means of a nearest neighbor classifier (CNN+k-NN). The latter

version is intended to study whether the features obtained by the CNN are only

suitable within a CNN setting or generalize for different classifiers. In order to

compare our results with the ones of [11], the same evaluation methodology is used.

Table 1 provides the detailed classification results. As a baseline, we report the

classification results from assigning all heatmaps to either the “pool” or the “no

pool” class (all-positive and all-negative, respectively). Sin ce the classes are im-

balanced, the accuracy in the all-negative class is already high and therefore, as

discussed in [11], we aim for high precision.

The best classifier with manual features is the 5-nearest neighbors classifier, which

achieves 94% accuracy and 68.5% precision [11]. When using CNN features with a

k-nearest neighbor classifier, we can maintain the classification accuracy, but lose

precision. The best classifier in terms of accuracy only achieves 60.6% of precision.

However, the full CNN setting outperforms previous methods and yields 95.5%

accuracy and 71.9% precision. Fig. 4 (right) shows the corresponding confusion

matrix.

[4]Scaling value which determines to which extent weight values are changed. If the

learning rate is too large, the optimizer will overshoot the minimum. If it is too

slow, the training takes a long time.
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Table 1 Classification results. a) Baseline classification by classifying all instances as “pool” or “no
pool”, respectively. b) Classification with manually designed features as in [11]. c) Nearest-neighbor
classification with CNN features. d) CNN classification.

Classification Method Accuracy Precision

a) All-positive 10.5% 10.5%

All-negative 89.5% -

b) SVM Gaussian 93.1% 66.7%

5-NN 94.0% 68.5%

1-NN 93.4% 66.7%

c) CNN + 7-NN 93.1% 60.0%

CNN + 5-NN 93.1% 57.7%

CNN + 1-NN 93.4% 60.6%

d) CNN pure 95.5% 71.9%

Predicted class Predicted class

no pool pool total no pool pool total 

no pool
788

96.6%

17
31.5%

805

True 

class

no pool
789

97.2%

16
28.1%

805

pool
27

3.4%

37
68.5%

64 pool
23

2.8%

41
71.9%

64

total 815 54 869 total 812 57 869

100% 100% 100% 100%

5-Nearest-Neighbor CNN

Figure 4 left: Confusion matrix for the 5-nearest-neighbor classification with manual feature
engineering from [11]. The overall performance of the pool detection algorithm is 68.5% in terms
of precision. The overall accuracy is 94.8%. right: Confusion matrix for the CNN classification:
The overall performance is 71.9% in terms of precision. The overall accuracy is 95.5%.

In order to investigate the result more closely, we visually examined the heatmaps

of the households with pools to search for the above mentioned rectangular patterns.

For some cases, these patterns were not obvious and could only be seen after setting

the maximum load to 2 kW (see Fig. 2 (bottom)), exploiting the fact that the load

of the pump is lower than this value. From the 23 households with an undetected

pool, 11 households did not show a rectangular pattern (which is true for only one

of the 41 households with a detected pool). One interpretation of this insight is that

the 11 households without the pattern might not be using their pools, i.e., the pool

pump is not running. Households with inactive pools will of course not be detected

by any method. Following this interpretation, the 11 misclassifications are label

errors, not classification errors. Furthermore, the presence of such inactive pools

could have the effect of label noise which significantly increases the classification

difficulty.

Further experiments with other appliances (home cinema, aquarium) were con-

ducted, but yielded poor results so far. One major issue is the low number of positive

samples in the dataset, which is even lower than those of the swimming pools.
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Discussion and Future Work
The results show that convolutional neural networks are able to competitively learn

the presence of pools even in the case of a relatively small dataset that contains

load profiles of 64 households with pools.

Deep learning is a quickly expanding field with a number of powerful methods to

improve the classification process. While pool detection on the given dataset may

have reached a limit, as argued above, one could try to predict more rare appliances

using data augmentation methods. Generative adversarial networks (GAN) [19] are

a means to produce artificial, new data but, to the best of our knowledge, have not

been applied to time series data (in the form of heatmaps) so far. A siamese network

architecture [20] could be used to train two subnetworks on a pair of heatmaps to

decide whether they are from the same class or not. The learned features could be

used for classification. The application of a siamese network drastically increases

the amount of input data as potentially all 8692 image combinations can be used.

From a privacy perspective, the good classification result is negative, since it

shows that personal information can be inferred from data in an automatic way,

i.e., without manual feature generation, which is typically the most time-consuming

modeling step. From this perspective, it is interesting to investigate whether the

features learned by the CNN (which showed worse results when combined with k-

nearest-neighbor classifier) could reach the performance of the full CNN approach

when used with another common classifier.

Similarly, but broadening the scope, it would be interesting to investigate whether

the features generalize to other appliances, i.e., whether the features are indicative

not only for pools. If so, the features could be used for transfer learning, meaning

that the already trained CNN is reused by fixing the weights in the feature layers

and only retraining the classification layers on the new task. Moreover, the transfer

learning setting could be applied to similar datasets from other countries. A gener-

alization across appliances or countries would have even more negative implications

for privacy.
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